ajax-loader  Loading... Please wait...

Adata 8GB DDR4 2133MHz AD4R2133Y8G15-BHYM Server Memory

Availability :
Out Of Stock
Product ID :
24 - 48 Hours

  • Cash on Delivery
  • Nationwide Delivery
  • Buyer Protection Guarantee
  • Trusted Sellers Only
  • 7 days Return Policy
  • Customer Service
  • 03-111-476-725


Product Description


- Brand: Adata 
- Model: AD4R2133Y8G15-BHYM 


- Capacity: 8GB (1x) 
- Type: DDR4 
- Speed: 2133MHz 
- Voltage: 1.2V


Additional Information:
- Compatible with the E5-2600 processor platform family v3 Intel Xeon 
- Voltage (core and I / O): 1.2V 
- Imput: 1-CMD / END 
- CK-enabled DLL: 667 MHz and 1.6 GHz 
- Bus DQ: POD12 
- Securities RTT: 240,120,80,60,48,40,34 


Package Contents:
- 01 Memory 8GB Adata

Server DRAM Modules

The new DDR4 standard represents a substantial upgrade to JEDEC’s dynamic random access memory (DRAM) standard, with numerous changes designed to lower power consumption while delivering higher density and bandwidth within the memory subsystem.
DDR4 is expected to deliver significantly higher performance via faster data transfer rates reaching at least 3200MT/s over time. In addition, the new specification introduces a number of enhancements used to improve both power efficiency and reliability. These features can add a significant amount of value to system designers, firmware developers, and software designers. As one would expect, engineers are expected to march through the natural progression of the technology validation including signal integrity, timing analysis and specification compliance, performance tuning and power management modeling.
While there are many potential instruments that can be used, a new generation of dedicated DDR bus analyzers now provide comprehensive timing and protocol analysis making them an important tool for accelerating DDR4 system validation and design. Substantially lower in cost than a logic analyzer, these systems can be used to qualify different memory DIMM components, as well as help sustaining engineering groups verify system operations over the entire product life cycle.

DDR4 Technology
DDR4, initially targeted for the server market, adopts a number of enhancements intended to deliver better performance, power-savings and RAS (reliability, accessibility and serviceability) versus DDR3. These enhancements present unique and significant performance improvements and power reduction opportunities. Special attention must be taken when setting DDR4 power savings parameters so that suitable performance levels are still achieved.


DDR4’s new memory interface employs “pseudo- open-drain” (POD) termination where memory cells can store a logical 1 without consuming power. POD relies on switchable, on-die termination instead of a separate resistor pull up. Parallel-terminating the receiver at the far end means the DDR4 DIMM only consumes power when the Vdd rail is pulled low to represent logical zero.
The anticipated higher transfer rates in DDR4 mandate tighter timing margins to support normal variations in memory DIMMs. DDR4 also offers programmable Command-to-Address Latency that can be used to improve system power efficiency. The expanded role of MRS and the introduction of bank groups make memory controller designs more complex. These factors are expected to drive changes in memory controller designs and associated IP in order to support DDR4.
Data transfer rates for DDR4 and DDR3 should overlap for the foreseeable future, with DDR4 delivering a longer performance runway. It is quite conceivable for a DDR4 platform to deliver moderate power savings versus a comparable DDR3 design, but potentially at the expense of lower memory bandwidth under certain DDR4 operating parameters. System designers need to design highly tuned, balanced platforms that leverage the power saving and RAS enhancements of DDR4.

no image
Start the discussion …

Customer Review

Write your own product review

Product Reviews

This product hasn't received any reviews yet. Be the first to review this product!

Product is Coming Soon Or Out of Stock